Tag Archives: green energy

Solar Joins 1,000 Year Old Gargoyles On Cathedral Roof

3 Nov

A cathedral in Gloucester is having a huge upgrade by installing solar panels to help cut its energy bills by up to 25 percent. Despite its 1,000 years of history, the cathedral was keen to embrace modern technology and is having 150 panels fitted on its roof.

The cathedral is based in southwest England and was built around the year 678 and is coronation site for King Henry III, the burial site of King Edward II and famously had a featuring role in three Harry Potter movies!

Mypower are in charge of the installation and say the cathedral will be the oldest in the UK and maybe even the world to have a “commercial size solar panel system on the roof.”

The great advantage of installing solar panels on cathedrals is that they are really tall. And the fact that they are surrounded by ornate buttresses and gargoyles and other fancy architecture means that the solar panels will mostly be hidden from the ground, meaning the cathedral gets to cut its energy costs by a quarter without really sacrificing its historic, architectural integrity. The panels will generate 25,000 kilowatts of energy a year, enough to power seven semi-detached homes for a year or make an impressive 250,000 cups of tea!

Mypower, the installation contractor on the project and the firms’ managing Partner Ben Harrison said they’ve had to work around twists and spots where the roof has sagged over time. He said they’ve worked closely with the cathedral’s structural engineers and architect to guarantee the work is completed properly. “At times it’s been extremely tight in terms of manoeuvrability around parts of the site, particularly when the work required us to work just inches away from centuries-old gargoyles, but we put strategies and measures in place to protect the building from any damage.”

A further advantage of building on cathedrals and older churches are that they were usually built pointing directly from east to west, leaving a huge area of south-facing roof that’s ideally situated for maximum solar gain.

The Church of England is running a Shrinking the Footprint campaign, and the solar array will help Gloucester Cathedral work towards the campaign’s goal of slashing carbon emissions “by 80 percent by 2050.” Given that the Church of England has declared climate change “a great demon”, and has even stripped itself from the dirtiest fossil fuels, I suspect we will see many more churches going solar as the costs come down.

Once finished, the 1,000 year old building will become the oldest cathedral in the UK, and possibly the world, to claim a commercial-sized solar panel PV system. The installation forms a key part of the £6 million Project Pilgrim scheme to make the cathedral sustainable for future generations.

Las Vegas To Go Green With Solar-Kinetic Street Lights

10 Mar

Las Vegas are making waves in the renewable energy market as they plan to install the world’s first solar-kinetic street lights at Boulder Plaza in the city of Las Vegas. Around the world today, there are more than 300 million street lights, many of which are powered by electricity generated from high carbon sources such as coal. Now, Las Vegas isn’t new to the renewable energy game, they recently installed a massive new solar plant in the Nevada desert. The Crescent Dunes concentrated solar power project is providing power to Sin City around the clock.

Around 40% of the energy used is wasted through poor lighting efficiency; contributing to another environmental problem, light pollution. Now, light pollution is not something to be ignored, it can lead to a change in the migration and reproductive activities of some animals and boost air pollution through light’s interaction with certain chemicals. Light doesn’t respect boundaries, it can spread for miles from the source and blurs the distinction between town and country. Light spilling up into the night sky is also a waste of energy and money. In the UK local authorities were estimated to spend £616 million on street lighting in 2013-14, and the lights can account for between 15-30% of a council’s carbon emissions. Efficient solar powered lighting can provide a solution to some of these issues.

EnGoPlanet is set to install the solar-kinetic lights at Boulder Plaza, which it claims will be the first ever installation in the world of the technology. They are powered by combining energy harvested from pedestrian’s footsteps and the sun. In short, when a pedestrian steps on a kinetic tile situated near the base of the light, energy is created that then charges a battery. 180 watts or 360 watts of high-efficiency solar cells are placed on top of each LED street light, along with motion sensors that allow for light on demand.

The product does more than just provide light. As Petar Microvic (CEO of EnGoPlanet) went on to say, “If you look at traditional street light poles, you will see that they are useless. They simply hold the lighting,” He added, ” With our solution, we’ve changed that by incorporating useful features into the pole and transforming it into a free service spot where people can rest, charge their portable devices, or connect to WiFi.”

The lights will also have smart sensors that observe air quality and traffic as well as video surveillance. The LED lights can change colours for special occasions and there is a wireless charging and WiFi hot spot for smart devices, along with two USB ports.

“Currently, street lights in the world release more than 100 million tons of CO2 per year. Our generation has the moral responsibility to transform our energy system. EnGoPlanet’s Street Light will revolutionise the way we illuminate streets. It will reduce CO2 emission, lower maintenance bills and with many new features, it will make cities smarter,” Petar Mirovic said in a statement.

Solar lighting isn’t just green – it can save money. EnGoPlanet mentions the example of Odessa College in Odessa, Texas, which installed solar lights and saved around 20 percent of the cost of a conventional system due to the avoidance of wiring and trenching works. The College is now saving more than £5600 per year.

Solar Kinetic Light

Could fungi found in the guts of cows and elephants power the future?

23 Feb

According to a group of researchers at the Agricultural Centre of Sustainable Energy Systems (ACSES) at the Harper Adams University in Shropshire, a cow’s digestive system could revolutionise renewable energy. The group believe that the answer to effective biomass conversion lives within the stomachs of cows, sheep and elephants. The group believe that if they could imitate their digestive systems, then they could create a streamlined, cost effective biomass generator. Have we had the answer all along?

Leader of the Agricultural Centre of Sustainable Energy Systems, Professor Theodorou, is amongst the group of scientists researching the potential benefits of the ‘gut fungi’ inside the stomachs of herbivores including elephants and cows. He said: “Renewable technologies are looking to use renewable plant biomass resources for chemical and fuel production, making us less reliant on fossil fuel.” He also went on to say:

“The objective of our work was to find an alternative, more straight-forward platform, mimicking the conversion of plant biomass to useful products in nature.

“In our work so far, we have identified hundreds of enzymes from the gut fungi, which have commercial biotechnology potential. It is because these fungi are able to survive in such a highly-competitive microbial ecosystem, where a myriad of protagonists seek to degrade plant biomass, that we believe they are so effective at their job.” Currently, commercial biomass facilities use genetically-modified enzymes from aerobic fungi such as Trichoderma and Aspergillus. They can digest plant biomass which, following fermentation of the released sugars, produces products such as bio-ethanol. This procedure however requires chemical pre-treatments to remove lignin from plants. The good news is that anaerobic fungi are found in the digestive tract of wild and domesticated herbivores, from elephants to cattle.

“We have so far shown that some of these enzymes are substantially better than the current solution at converting plant biomass to sugars. We need to invest more resources to study this group of relatively unknown microorganisms. They may hold the key to the renewable technology of effective biomass conversion. Their full potential must be explored and exploited.”

Currently, a genetically-modified solution is being used in the biomass process. The downside to the current method is the cost due to needing an expensive pre-treatment so that the plant biomass can be successfully digested. This is then followed by the fermentation of released sugars by yeast to produce products such as bio-ethanol.

Researchers have previously claimed that using cow manure could provide up to 3% of America’s electricity needs, while simultaneously slashing greenhouse gas emissions. Other success stories closer to home include the case were more than 430 households in Northern Ireland were provided with heat and electricity by the poo from 600 cows.

A New Energy Plant In Hawaii Generates Power From Different Ocean Temperatures

27 Aug

Hawaii must be our most blogged about country but we are not ashamed…we love Hawaii and if you do too, then this one is for you…

Hawaii has a habit of being at the forefront of renewable energy projects as the state relays heavily on imported fuel to provide most of its power. They have implemented a plan to use 100% renewable energy by 2045 and have already installed wind power plants, smart grid systems, and a number of solar installations.

They now plan to embrace their home islands water boarders by implementing a fully closed cycle ocean thermal energy conversion (OTEC)…that one doesn’t roll off the tongue that easy. In short an OTEC is a method of using temperature difference between the warm ocean surfaces heated by the sun with that of much colder deeper water below in an effort to create electricity. Due to the exchange of heat, steam will power a turbine and produce electricity at an onshore power station. Sounds easy right?

This type of technology is much easier to harness compared with that of wave power as it is much less stable. A further benefit of the technology is that it can always produce energy regardless of whether its day or night. It also has a capacity of 105kW, enough to power 120 Hawaiian homes every day!

The plant was designed by Makai, who have also signed to produce another plant on the island of Kyushu in Japan. Here it will develop a 1MW plant. Makai publically flipped the switch of its Ocean Thermal Energy Conversion power plant on Hawaii during a dedication ceremony on Friday.

With Hawaii’s temperature stable waters year round, the process provides a steady power stream. The fuel is free, and as the OTEC technology is perfected, the price of electricity will decrease.

Gov. David Ige said in a press release; “Today marks the launch of the world’s largest operational ocean thermal power plant,” Ige said. “This plant provides a much-needed test bed to commercialize ocean thermal energy conversion technology and bolster innovation, and it serves as a stepping stone to larger plants that will provide meaningful amounts of stable, clean power to Hawaii and other locations in Asia Pacific such as Okinawa in the near future.”

The Hawaiian site will serve as a demo site called the Ocean Energy Research Centre to prove the prospects of this type of technology and to inspire other places in the region like Okinawa and Guam to install something similar.

Eventually, Makai hopes to move their operations offshore, to head directly to the source of the deep, cold water needed to power the OTEC plant. They hope that this planned expansion will generate enough energy to power 120,000 homes every year. They estimate that it could be sold at only 20 cents per kWh which is a huge bonus for the green minded state.

It isn’t only Hawaii and Japan that could benefit from this type of technology. Makai have named Brazil, Sri Lanka, the Maldives and West African Nations as potential locations for an OTEC plant. These nations are very well suited to the plants and would get a majority of their energy needs from ocean thermal energy.

makai ocean energy research center

In France All New Commercial Buildings Must Install Green Roofs or Solar Panels

26 Jun

France has introduced a new building requirement in its commercial zones. It calls for all roofs to be partially covered in either solar panels or plants. This is just a recent green headline to come from France following the Eiffel Tower wind turbines and the tree shaped wind turbines that are being installed in the capital.

Green roofs have been around for centuries in different corners of the world. We have seen an increase in green roof interest due to growing concerns surrounding climate change, carbon footprints and sustainability. It is not only roof’s that can be covered; walls can also have a green makeover. They offer many advantages to the public and private sectors ranging from waste diversion to energy efficiency.

A further benefit of a green roof is its isolating effect which allows buildings to better retain their heat during the winter months while reflecting and absorbing solar radiation during the summer months, allowing buildings to remain cooler.

They can help reduce the distribution of dust and particle matter through cities to combat the smog issue. They play a huge role in reducing greenhouse gas emissions and help adapt urban areas to predicted future climates with warmer summers.

Green roofs also have the ability to reduce sound from outside by up to 40 decibels. They have excellent noise reduction, especially for low frequency sounds.

Originally, French environmental activists had asked for all rooftops to be 100% green. The Socialist government convinced activists to limit the scope of the law to just commercial buildings.

By giving businesses the option to install solar panels rather than green roofs, France could catch up some with its neighbours when it comes to solar energy.

Germany currently has the highest installed capacity of solar and shows no signs of slowing down. Think Progress recently reported that France had only five gigawatts of photovoltaics implemented as of last summer, accounting for only one percent of all energy production.

Since 2009, Toronto Canada has had a similar mandatory green roof law in place, requiring green roofs on new buildings. Preliminary studies suggested that the city could save hundreds of millions of dollars in energy costs. France is making an investment in energy independence, efficiency, and stability.

Maybe we should all be looking at green roofs in our cities?

green-roofs-france

 

Why going solar may be right up your street

5 Jun

Are you thinking of investing in a solar powered future for you and your family? Increasing numbers of homeowners around the world are going solar, and the green energy investment not only saves money in the long run, but also helps the environment. What’s not to love?

In terms of global installed capacity, solar is the 3rd most important renewable energy source sitting just behind hydro and wind respectively. Solar panels don’t need direct sunlight to work; they can still generate some electricity on a cloudy day. The cells convert the sunlight into electricity, which can be used to run household appliances and lighting.

The benefits of going solar

  1. Once the panels have been installed there is no need for any fuels to be consumed. What could be greener than that?
  2. In terms of your local community – By reducing the impact on the power grid (with your house being self-efficient) power is conserved for other locations around the community.
  3. The sun must be the most reliable source of power due to the fact it will be around for the next several billion years. An abundant power source if you ask us.
  4. Get paid for generating electricity. The government’s Feed-In Tariffs pay you for the electricity you generate – even if you use it!
  5. SUNLIGHT IS FREE! So once you have paid for the initial installation your energy costs will be reduced.
  6. You could sell electricity back to the grid. Basically, if your system is producing more electricity than you use, you can sell the surplus back to the grid.
  7. A typical home which operates under solar power could save over a tonne of carbon dioxide per year. You could be the greenest person you know considering you could save more than 30 tonnes over its lifetime!

Solar power around the world

You might be surprised to know that in 2010 Germany had the highest capacity of solar photovoltaic power in the world and still does to this day. Despite a slowdown in 2013, Germany is expected to remain the top solar market in Europe for the coming years, and still boasts a quarter of the world’s installed PV capacity 26 percent, compared to the 13 percent held by each of the next two countries, Italy and China.

China is second on the list. Coupled with a commitment to cut its coal use, the world’s biggest carbon polluter could soon also be the country powered with the greenest energy. It helps that China is a major solar panel manufacturer, and the government has had to repeatedly raise its renewable energy targets — from a plan of 20 GW by 2020 to 20-30 GW by 2020 to the current target of an astounding 70 GW of solar by 2017.

Rounding off the top three is Italy. Rising from fifth place in 2010 to third place as of the end of 2013, Italy generates more of its energy from solar than any other nation, with 7.8 percent of its energy coming from solar, compared to 6.2 percent for Germany.

As for the little island called the United Kingdom, we come at an impressive 10th. In 2013, the U.K nearly doubled its solar capacity, installing more even than Italy, the current 5th-place holder. Pretty impressive!

Frequently asked questions

  • A popular question asked by someone wanting to go solar is what happens when they move home. In short, ownership of the technology is linked to the site and, therefore, in the case where a building or homeownership changes, the ownership of the technology would also transfer to the new owner.
  • Another popular subject is the questionable amount of sunshine in the UK. Well, solar panels work using light, and not necessarily sun light. This means that a solar PV or solar thermal system can function in cooler and often cloudier countries. However you will of course generate more energy at sunnier times of the year.
  • And finally, where should you installed your solar panels – Maximum output comes from south facing systems between 30-40 degrees from horizontal. Although most systems are installed on a roof, they can be installed on any surface such as facades, sunshades, garages or ground mounted. They are normally installed in locations that receive sunshine through most of the day.

If you would like any more information regarding solar power call us on 020 8883 4595. One of our dedicated team members will be happy to help!

Wind Energy Production Has A Record Breaking 2014 Across The Globe

7 May

It’s good news on the renewable energy front. It has been reported by The Global Wind Energy Council (GWEC) that global wind energy production increased by 44% in 2014. It appears the world’s energy worries may be actually blowing in the wind as a total 51,477 megawatts worth of wind capacity was installed around the globe.

It has taken around 40 years to get here but the total global wind capacity now stands at a huge 369,553 megawatts. 2014’s total is about one seventh of the total installed which is a good indication of how popular wind power has become.

At the end of 2013, the expectations for wind power market growth were uncertain, as continued economic slowdown in Europe and political uncertainty in the US made it difficult to make projections for 2014. Thus, you can imagine the surprise of the 2014 results.

Green news outlet, Treehugger said “This means that, in theory, even without acceleration in the rate of growth, we could double wind capacity during the next seven years.” They also speculate that the figure would double again in just five years.

China has had the largest overall market for wind power generation since 2009 and due to another remarkable year has retained the top spot in 2014. Europe had a good year earning them runner up, followed by North American, a distant third.

Zoom into Europe and we find that Germany had a brilliant year in 2014 both onshore and offshore – but rest assured, the United Kingdom also had a great year earning us second place for wind in Europe by installing a total 1,736MW, of which 923 MW was onshore and 813 MW was offshore. The UK is the largest offshore wind market in the world with total installations of almost 4,494 MW, accounting for over half of the global offshore market. The UK now generates enough wind energy to supply the needs of more than 6.7 million UK households. Not bad for a small island!

When it comes to the present a new report from GlobalData has found that Germany is set to overtake the UK as global leader for annual offshore wind turbine installations in 2015, with an estimated 2,071 MW set to be added this year. “Germany’s huge increase in offshore installations is attributable to several offshore wind projects scheduled to come online in 2015,” said Ankit Mathur, GlobalData’s Practice Head for Power.

China is also springing into action and will jump into second place, leaving the UK in third position. Ankit Mathur also went on to say;

“China is also planning an array of offshore wind projects this year, which will see it overtake the UK for annual installations.”

“Additionally, the next few years will see China maintain its annual offshore wind installations around the 1 Gigawatt mark, while the UK will observe relatively lower installations until 2018, when the country’s next offshore growth spurt is expected.”

Chin up UK – this is one race where it doesn’t really matter who comes in first because everyone’s a winner.

%d bloggers like this: